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Introduction

Endothelial junctions control the integrity and remodeling of 
the entire endothelial cell layer. Multiple physiological and patho-
physiological processes such as barrier function, inflammation, 
wound healing, and angiogenesis require both a mechanically 
stable connection of the cells to each other as well as dynamic 
plasticity. These features are required for all sheet-forming cell 
layers of epithelium and endothelium, but there are significant 

differences in junction organization and dynamics between the 
two cell types. One of the most impressive differences belongs 
to the apico-basal constitution of distinguished tight, adherens, 
and gap junctions in epithelial cells, while these structures are 
interwoven in endothelium.1,2 Differences in cell junction organi-
zation relate to the mesenchymal origin of the endothelium, the 
flat morphology, and the expression of epithelial and endothelial-
specific adhesion receptors, which implicate variations in regula-
tion and dynamics accordingly.

Adherens junction proteins, particularly the cadherin/
catenin complex and actin filaments, mediate adhesion of 
adjacent cells, and this, apart from others, constitutes a pre-
condition for overall junction differentiation and regula-
tion.1-3 Adherens junctions of the endothelium are ubiquitously 
expressed along the vascular tree and are the predominant 
structures of the micro-vascular bed where solutes and water are 
exchanged between the blood and the tissue.4,5 Furthermore, 
the endothelium of the micro-vascular bed, particularly in post-
capillary venules where inflammatory reactions preferentially 
take place,1,6-8 do not express the tight junctions strands that 
are usually required for tight barrier function.4,5 These facts 
make adherens junctions a critical structure for regulating all 
cell junctions in endothelium. Due to its critical assignments, 
adherens junction exhibit high plasticity and dynamics under 
physiological and pathological conditions.1,9-13 The vascular 
endothelial (VE) cadherin/catenin complex14,15 is the backbone 
of adherens type junctions in endothelium and is, similar to 
the E-cadherin/catenin complex in epithelium, associated with 
actin filaments. However, there are significant differences in 
molecular organization of the cell junctions. Apart from the 
differences in morphological appearance, the chain protein 
γ-catenin/plakoglobin is expressed in both cell types, but it 
is exclusively localized at desmosomes in epithelium and is 
associated with keratin intermediate filaments. Desmosomes, 
on the other hand, are largely absent (there are few exceptions 
described) in endothelium, and thus, γ-catenin/plakoglobin 
interacts with vimentin intermediate filaments via association 
to VE-cadherin.16 This difference might also have an impact 
in organization of actin filaments. Furthermore, endothelial 
junction expresses endothelial-specific proteins and proteins 
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endothelial adherens junctions are critical for physiologi-
cal and pathological processes such as differentiation, mainte-
nance of entire monolayer integrity, and the remodeling. The 
endothelial-specific ve-cadherin/catenin complex provides 
the backbone of adherens junctions and acts in close interac-
tion with actin filaments and actin/myosin-mediated contrac-
tility to fulfill the junction demands. The functional connection 
between the cadherin/catenin complex and actin filaments 
might be either directly through α-catenins, or indirectly 
e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or 
ePLiN. However, both junction integrity and dynamic remodel-
ing have to be contemporarily coordinated. The actin-related 
protein complex ARP2/3 and its activating molecules, such as 
N-wASP and wAve, have been shown to regulate the lammelli-
podia-mediated formation of cell junctions in both epithelium 
and endothelium. Recent reports now demonstrate a novel 
aspect of the ARP2/3 complex and the nucleating-promoting 
factors in the maintenance of endothelial barrier function and 
junction remodeling of established endothelial cell junctions. 
Those mechanisms open novel possibilities; not only in fulfill-
ing physiological demands but obtained information may be 
of critical importance in pathologies such as wound healing, 
angiogenesis, inflammation, and cell diapedesis.
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not found in epithelium, such as PECAM-117,18 and MUC18 
(synonym S-endo; CD 146).19

It is frequently proposed that the dynamics of both the 
VE-cadherin/catenin complex and actin filaments are inter-
dependently regulated to ensure junction adhesion and barrier 
function, but at the same time to allow quick remodeling and 
plasticity. There are a number of controversial issues that have 
been discussed as to whether the cadherin/catenin complex 
in general or the VE-cadherin/catenin complex in particular 
is directly or indirectly linked to actin filaments. However, 
interdependent dynamics between the VE-cadherin/catenin 
complex and the actin filaments are of critical importance for 
regulation. A novel aspect in this discussion came up as recent 

reports place the actin-related protein-2/3 complex 
(ARP2/3) and its activating molecules, the nucleation-
promoting factors (NPF), in a central role for junc-
tion regulation. In this context, α-catenin and p120ctn 
might mediate the functional connection between the 
ARP2/3 complex and the VE-cadherin/catenin com-
plex. This includes initial junction formation, but also 
junction maintenance, dynamics, and plasticity of 
established cell junctions.11,20-22

Short Overview of the VE-Cadherin/ 
Catenin Complex

The vascular endothelial cadherin (VE-cadherin) 
is an endothelial-specific type II cadherin that medi-
ates mechanically stable cell adhesion between adja-
cent endothelial cells.14,15 VE-cadherin consists of 
an extracellular N-terminal extracellular domain, 
a trans-membrane domain, and a short C-terminal 
cytoplasmic domain. The extracellular domain con-
sists of five cadherin repeats (EC1–EC5) of which 
the terminal EC domains binds like other cadherins 
in a homophilic and calcium-dependent manner, and 
thus forming cell–cell adhesion complexes.23 The 
extracellular domain is highly glycosylated carrying 
large amounts of terminal sialic acids that might also 
contribute to adhesion features of the extracellular 
domain.24 The extracellular (EC1-EC5) domain also 
binds regulatory molecules in cis as shown for the vas-
cular endothelial (VE) phosphotyrosine phosphatase 
(VE-PTP)25 that, in turn, is associated with the vascu-
lar endothelial growth factor receptor 2, VEGFR2.26 
The close association of VE-cadherin via its extracel-
lular domain with other membrane receptors might 
cause functional clusters that are critical for local 
signal transduction. For example, downregulation of 
VE-PTP increased endothelial permeability and com-
promised VE-cadherin adhesion. Furthermore, bind-
ing of certain leucocytes to endothelium dissociated 
the VE-PTP from VE-cadherin.27 Another example is 
the transduction of mechanical stimulation into intra-
cellular signals requiring VEGFR2, VE-cadherin, 
and PECAM-1.28 Furthermore, VE-cadherin com-

prises a single membrane-spanning domain followed by a short 
carboxyterminal cytoplasmic domain that connects many 
regulatory molecules, including p120ctn, β-, and γ-catenin. 
P120ctn binds to the juxtamembrane cytoplasmic region of 
VE-cadherin, while β-catenin and γ-catenin binds to the distal 
part of the cytoplasmic domain. Both β-catenin and γ-catenin 
bind in turn α-catenin together forming the VE-cadherin/
catenin complex.1,9,10 The p120ctn is supposed to possess pleio-
tropic functions and might be directly involved in control-
ling actin dynamics (for details, see below). VE-cadherin, β-, 
and γ-catenin are involved in transcriptional control, and can 
function as targets for cell signals in inflammation, angiogen-
esis, and wound healing (for review, see refs. 1, 6, 9, and 29). 

Figure 1. Distribution of ve-cadherin and actin at cell junctions of subconfluent and 
confluent endothelial cells in culture. Subconfluent and confluent human umbili-
cal vein endothelial cells (HUveC) cultures were labeled with (a) anti-ve-cadherin 
(green) and phalloidin-TRiTC for filamentous actin (red) or (b1–3) ve-cadherin alone 
(red). (a) ve-cadherin appears interrupted in the subconfluent cultures (arrows) 
with large cells and extended perimeter, while cells of confluent cultures are small 
and polygonal and preferentially exhibits a continuous ve cadherin distribution 
(arrow). Boxes in the merged images indicated the cropped area as indicated. Actin 
filaments are incomplete co-localized with the ve-cadherin/catenin complex in 
both subconfluent and confluent cultures. (b1–3) Higher magnification of HUveC 
cultures labeled with anti-ve-cadherin (red). (b1) ve-cadherin appears in confluent 
cultures in a continuous ve cadherin patterning (arrow) while (b2) in subconfluent 
cultures, ve-cadherin preferentially appears as an interrupted patterning by which 
ve-cadherin cluster display different sizes (arrows). (b3) A ve-cadherin adhesion 
plaques, which is a result of JAiL formation is indicated (dotted line).
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Beta-catenin also interacts with caveolin-130 and recent reports 
indicate that phsophocaveolin-1 increasingly binds β-catenin 
and controls a stimulus-dependent association of β-catenin to 
VE-cadherin.31,32 Both catenins have been shown to be essen-
tial in barrier function regulation.27,33,34 Alpha-catenin that 
binds to either β- or γ-catenin however is supposed to directly 
or indirectly regulate and connect the cadherin/catenin com-
plex1,2,23,35,36,37 to actin filaments (for more details, see below).

Short Overview of Actin Filaments in Endothelium

Non-muscle actin, particular β-actin and γ-actin,38 com-
prises about 10% of the total endothelial protein,39,40 and thus, 
is a major protein in endothelium. Actin filaments (F-actin) 
polymerize from actin monomers (globular or G-actin) form-
ing filaments between 5–7 nm. Actin filaments mostly appear 
in endothelium as components of super-structured protein 

Figure 2. Scheme illustrating the interdependency between JAiL-activity and ve-cadherin dynamics in relation to cell density. For details, please com-
pare text.
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assemblies, described as actin bundles, as actin networks, and as 
cortical actin filaments.37,41,42 (Fig. 1).

Actin bundles consist of polarized short actin filaments that 
are associated with myosin II and α-actinin; proteins required 
for development of contractile forces in endothelium.39,43 Actin 
bundles include both the circumferential actin filaments along 
the junctions and the cytoplasm traversing stress fibers. The cir-
cumferential junction-associated actin bundles are characteristic 
for intact endothelium in vivo, while stress fibers preferentially 
appear when endothelium becomes activated e.g., under inflam-
matory conditions and wound healing; conditions that are gener-
ally associated with cell proliferation and migration.1,9,37,44

Actin networks mostly appear, like in other cells, as lammelli-
podia at the leading edge of migrating cells11,45,46 and as junction-
associated intermittent lamellipodia (JAIL) at established cell 
junctions.11 Those networks are of critical importance in control-
ling endothelial barrier function and remodeling (for details, see 
below).

Cortical actin filaments are supposed to be located below the 
plasma membrane where they associate with the endothelial 
membrane cytoskeleton.37,42 Since the endothelial membrane 
cytoskeleton contains spectrin, protein 4.1, and ankyrin, simi-
lar to the erythrocyte membrane cytoskeleton,47-49 a compa-
rable organization might exist. However, the organization of 
the membrane cytoskeleton and its interaction with cortical 
actin in endothelium is less defined. Particular investigations 
are required to understand how the membrane cytoskeleton 
interacts with cortical actin filaments and how these structures 
connect to cell junctions and focal adhesion sites. The impor-
tance of these interactions are supported by the demonstration 
that α-II-spectrin, a major component of the membrane cyto-
skeleton, is involved together with the vasodilator-stimulated 

phosphoprotein (VASP) in endothelial barrier function 
control.49

Interaction of the VE-Cadherin/Catenin  
Complex with Actin Filaments

The interaction between the VE-cadherin/catenin complex 
and actin filaments includes initial junction formation, junc-
tion maturation, maintenance of junction integrity, and junction 
remodeling in physiological and pathological conditions, such as 
angiogenesis, wound healing, and inflammation. A number of 
signaling mechanisms modulate the structure and function of 
both VE-cadherin/catenin complex and the actin filaments. This 
includes Rho GTPase family, kinases, phosphatases, and junction-
regulating molecules such as PECAM-1 ESAM, VE-PTP, and 
others, which are described in a number of excellent reviews.1,9,50 
Most of the current knowledge on interactions between the cad-
herin/catenin complex and actin filaments arises from studies 
performed on epithelium,2,10,51 but recent data defines α-catenin, 
p120ctn, and the ARP2/3 complex as critical molecules that con-
tribute to the coordination between VE-cadherin/catenin com-
plex and actin filaments in endothelium.

Impact of α-catenin in linking actin filaments to the 
VE-cadherin/catenin complex

The first molecule described to connect the cadherin/β-
catenin complex to actin filaments is α-catenin as it binds both 
β-catenin and actin.52 A large number of further studies sup-
ported this concept until two papers appeared in 2005 that chal-
lenged this dogma.53,54 A controversial debate during that time 
increased surrounding the question as to whether α-catenin can 
mediate a direct or indirect link to actin filaments. The two 
papers53,54 demonstrated that α-catenin exists as both a monomer 
that preferentially binds to β-catenin and as a homodimer that 
preferentially binds actin filaments. Since the α-catenin mono-
mer but not the homodimer can bind to β-catenin, together 
with the observation that α-catenin cannot bind to both actin 
and β-catenin at the same time, it was suggested that there is 
no direct interaction between the cadherin/catenin complex and 
actin filaments. Furthermore, α-catenin competes with the actin-
related protein (ARP) 2/3 complex for binding to actin filament 
indicating a dynamic and competitive regulation,53,54 rather than 
a relatively static molecular architecture. Such a mechanistic con-
cept allows a quick remodeling of cell junctions. Further proteins 
were shown to bind α-catenin as well. This includes α-actinin,55 
vinculin,56 ZO-1,57 afadin (AF6),58 ajuba,59 and formins.60 Most 
of these proteins are also actin-binding proteins and the large 
diversity of proteins indicates a complicated, and possibly stim-
ulus-specific, differential regulation of this interaction. Alpha-
catenin has further been linked to actomyosin filaments61 and 
can transmit mechanical forces into chemical signals.62 Another 
molecule that has been demonstrated as a connector between 
actin filaments and the cadherin/catenin complex is the epi-
thelial protein lost in neoplasms (EPLIN). EPLIN is an actin 
and α-catenin-binding protein,63 and thus, can mediate a link-
age between the VE-cadherin/catenin complex and actin fila-
ments.23 In summary, α-catenin is a suitable target to coordinate 

Figure  3. Time-lapse series of ARP2/3 complex-mediated JAiL forma-
tion and ve-cadherin dynamics in subconfluent endothelial cell cultures 
expressing both the fusion protein eGFP-p20 (green) and ve-cadherin-
mCherry (red) at high magnification. (A) JAiL developed (yellow arrows) 
to its maximal extension within 4–5 min (green, dotted lines). JAiL devel-
oped close to and between interruptions of ve-cadherin-m-Cherry clus-
ters and caused new ve-cadherin adhesion plaques (B, yellow arrows 
and dotted lines). (B) ve-cadherin-mCherry plaques (dotted lines) 
increasingly cluster (white arrows) during JAiL retraction and assemble 
at cell junctions. This mechanisms change the ve-cadherin pattern, and 
thus, contributes to ve-cadherin dynamics. Taken from Taha et al., 2014, 
MBoC.



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com Cell Adhesion & Migration 129

the regulation between VE-cadherin/catenin complex and actin 
filaments. The functional importance of these regulations was 
recently supported through evidence discovered in vivo, as 
replacement of VE-cadherin by VE-cadherin-α-catenin fusion 
construct in mice largely blocked growth factor and histamine-
induced permeability.64 Further studies are required to unravel 
a molecular architecture that regulates the dynamic interplay 
between α-catenin and actin.

Impact of p120ctn in dynamics of actin filaments at cell 
junctions

P120ctn, an armadillo family protein, binds to the juxtamem-
brane region of the cadherin cytoplasmic domain and is supposed 
to control lateral E-cadherin clustering, E-cadherin recycling, 
modulation of Rho GTPase and Rho-activated protein kinase 
(ROCK) activity, cytoskeleton rearrangement, and transcrip-
tional control.65-67 Many of these functions were also demon-
strated for regulation of the VE-cadherin in endothelium.68-76 
Importantly, recent data indicates the involvement of p120ctn 
in controlling ARP2/3 complex-mediated actin polymerization 
at endothelial junctions, by binding to the nuclear-promoting 
factors Wiskott-Aldrich Syndrome Protein (N-WASP)21 and to 
cortactin.77,78 Both the ARP2/3 complex11,21 and cortactin79-85 
control endothelial integrity, and particularly, N-WASP control 
ARP2/3 complex-mediated formation of new VE-cadherin adhe-
sion sites, which drive the VE-cadherin dynamics.11

Junction dynamics is controlled by lammellipodia and 
filopodia

Junction dynamics starts with initial junction formation 
between adjacent cells. This process requires cell migration to 
bring plasma membranes of two cells together. Cell migration and 
junction dynamics are mediated by plasma membrane protru-
sions that appear as lamellipodia and filopodia; highly dynamic 
structures that are driven by actin polymerization. Cell migration 
and initial cell contact formation is thoroughly investigated but 
the mechanisms that explain the motion of cells within sheet-
forming endothelial cell layers, a process that essentially require 
constitutive junction remodeling, are incompletely understood. 
Initial junction formation is mediated by lamellipodia formation 
that overlaps the plasma membranes of adjacent cells. This pro-
cess led to homophilic engagement of cadherins that are found as 
mono or multimers at the free plasma membrane.86

In endothelium, the initial VE-cadherin/catenin complex-
mediated contact formation is suggested to occur in a two-step 
process. In the first step, VE-cadherin engagement is mediated 
by lamellipodia that subsequently disappear and second remodel 
into filopodia-like structures as evidenced by the presence of fas-
cin and the vasodilatator-stimulated phosphoprotein (VASP).46 
Vice versa, cadherin induces actin polymerization as shown for 
E-cadherin in 2002 and has been demonstrated to be required for 
junction extension while being controlled by the ARP2/3 complex 
in epithelium.20 This process was demonstrated to use α-actinin-4 
as a bridge molecule between adherens junctions and actin fila-
ments in MDCK cells.87 In this nice study, latrunculin was used 
to depolymerize actin filaments followed by wash out, which led 
to actin polymerization at adherens junctions and required the 
α-actinin-4.87 VE-cadherin engagement also seems to induce 

actin polymerization in endothelium, as filopodia were positive for 
VE-cadherin and associated with myosin II-containing stress fibers 
that radiate perpendicular to cell junctions while also being able to 
develop contractile force.46 The functional impact of the lamel-
lipodia–filopodia transition in endothelium is currently unclear 
but may depend on cell density. The overall cell and cell–junction 
dynamics in confluent endothelium also depend on lamellipodia-
like plasma membrane protrusions that appear intermittently and 
are spatiotemporally restricted at established cell junctions that 
locally lack VE-cadherin. Those lamellipodia were termed junc-
tion-associated intermittent lamellipodia (JAIL) and shown to be 
of central importance in the maintenance of junction integrity and 
remodeling.11 Lamellipodia and filopodia are driven by formation 
of actin networks due to polymerization and branching, processes 
that are controlled by actin nucleators and nucleation-promoting 
factors. Actin nucleators include the ARP2/3 complex and its 
nucleation-promoting factors, such as N-WASP and cortactin, 
the FH2-domain-containing nucleators of the formin superfam-
ily, and the WH2-domain-containing nucleation factors such as 
Spir-1 proteins.88-90 In endothelium, the ARP2/3 complex and its 
nucleation-promoting factors have been recently addressed to play 
a central role in regulation of endothelial cell junctions.

The ARP2/3 complex, a central player in junction dynamics 
of the endothelium

The ARP 2/3 complex is a widely expressed protein and con-
trols actin polymerization via nucleation and branching and 
is thus of critical importance in cell migration, phago-, and 
endocytosis, and the formation and maintenance of the cad-
herin/catenin complex-mediated endothelial cell–cell adhesion 
and integrity. The ARP2/3 complex is a heptamer of approxi-
mately 220 kDa and consists of two subunits that have a similar 

Figure 4. High magnification of cell junctions in (A) subconfluent and 
(B) confluent HUveC cultures labeled with antibodies as indicated. 
(A) JAiL (arrows) preferentially appear at spaces close to and between 
ve-cadherin/catenin clusters (arrowheads). (B) even in confluent cul-
tures, small interruptions of the continuous ve-cadherin/catenin line 
appear spatiotemporally restricted followed by formation of small 
ARP2/3 complex controlled JAiL. Taken from Taha et al., 2014, MBoC.
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structure to actin (ARP2 and ARP3), in addition to five other 
subunits; p41-Arc (ArpC1), p34-Arc (ArpC2), p21-Arc (ArpC3), 
p20-Arc (ArpC4), and p16-Arc (ArpC5).89,91-93 The ARP2/3 
complex binds with its ArpC2, ArpC4 to connect with exist-
ing actin filaments (mother filament),89 while ARP2 and ARP3 
control actin nucleation by mimicking an actin heterodimer that 
serves as a nucleation template.94 The ARP2/3 complex is usually 
inactive under resting conditions and needs to be activated by 
nucleation-promoting factors (NPFs).89,91-93 NPFs are classified 
in two groups according to their mechanistic activity; class I and 
class II.89 The Wiskott-Aldrich syndrome protein (WASP) and 
the WASP-family verprolin-homologous protein (WAVE) are 
NPFs type I, while cortactin, a class II-promoting factor, were 
indicated to control junction regulation.89,93

Activation of ARP2/3 complex differs largely between NPFs 
and several models have been proposed. Both N-WASP and 
WAVE2 was indicated to control adherens junctions in epithe-
lium and endothelium by triggering ARP2/3-mediated actin 
nucleation and mediate tension development and stabiliza-
tion.95,96 However, N-WASP has been indicated to be critical in 
junction dynamics of both epithelium and endothelium,11,21,96,97 
and thus, is briefly discussed here in more detail. N-WASP con-
sists of an N-terminal WASP-homology domain (WH-domain), 
a central GTPase-binding domain (GBD), and a conserved car-
boxyterminal veroprolin central acidic domain (VCA-domain). 
Intramolecular binding of the VCA-domain to the GBD-domain 
blocks the ability of N-WASP to activate ARP2/3 complex. 
Activation of ARP2/3 complex and subsequent actin polymeriza-
tion is supposed to occur by binding of the V-domain of N-WASP 
to actin and the CA domain to the ARP2/3 complex. For further 
details, we refer to recent reviews.89,91-93 A novel study indicate 
that two rather than one VCA domains are required for ARP2/3 
activation;98 a discovery that might have an impact in coordi-
nation of different signals appearing at the same time. Another 
protein that controls the ARP2/3 complex activity is cortactin, a 
class II NPF that has been demonstrated to control endothelial 
barrier function and leucocyte transmigration.79,80,83,85,99,100

Furthermore, cortactin has multiple functions in cell motil-
ity and is able to activate N-WASP.101 For further readings to 
cortactin, please see recent reviews.102-105 Both WASP and cor-
tactin are targeted and activated by a number of cellular sig-
nals. These include the Rho-family GTPases Cdc 42 and Rac, 
tyrosine kinases, the phosphatidyl (3,4,5) triphosphate, and 
focal adhesion kinase.93,102,104,106-108 These signals are of critical 
importance in regulation of endothelial barrier function,50 and 
thus, might provide a link to ARP2/3 complex-mediated actin 
polymerization.

Interdependent activity between the ARP2/3-controlled 
JAIL and the VE-cadherin/catenin complex

The concept of an interactive regulation between VE-cadherin-
mediated cell adhesion and actin dynamics to control junction 
dynamics and barrier function was proposed a long time ago. 
This includes the dynamics of junction formation, maintenance, 
and remodeling after stimulation. A clear piece of evidence for 
the role of the nuclear-promoting factor N-WASP in regulation 
of endothelial barrier function was recently provided.21 Depletion 

of N-WASP in cultured endothelium altered the barrier function 
and delayed the barrier function recovery after thrombin stimu-
lation. Furthermore, it was demonstrated that p120ctn precipitates 
with N-WASP, and this behavior was dependent on the phos-
phorylation of tyrosine 256 in N-WASP in endothelial cells.21 
It was concluded that actin polymerization is critical in both 
the maintenance of junction integrity and resealing activity fol-
lowing stimulation in interaction with p120ctn.21 Another study 
using a fluorescence energy transfer technique indicated spon-
taneous RhoA activity at plasma membrane protrusions109 under 
resting conditions. RhoA activity was enhanced after thrombin 
application, but was also seen during barrier function recovery. 
This suggests that both the opening and closing of endothe-
lial cell junctions in response to thrombin is accompanied by 
local RhoGTPase activity at plasma membrane protrusions.109 
Furthermore, the ARP2/3 complex-mediated actin polymeriza-
tion was essential in sphingosine-1-phosphate-induced increase 
in barrier function.97 Together, this data clearly indicate that 
actin polymerization is an essential step in endothelial barrier 
function dynamics. The molecular mechanistic background that 
constantly controls junction dynamics and endothelial barrier 
function and integrity was recently demonstrated in a cell culture 
model when comparing the cell density-dependent dynamics of 
VE-cadherin and actin.11

VE-cadherin patterning is independent on VE-cadherin 
expression level but depends on cell size

Endothelial cell cultures display a density-dependent 
VE-cadherin and actin patterning. This was first described 
in 1995110 and confirmed later in many other studies (Fig. 1). 
Subconfluent endothelial cultures display an interrupted 
VE-cadherin patterning, while highly confluent cultures (we 
use the term confluent for HUVEC cultures for a cell density 
> 105 cells/cm2) display a continuous line of VE-cadherin along 
the junctions. The interrupted VE-cadherin-patterning in sub-
confluent cells is characterized by the appearance of individual 
VE-cadherin clusters of various sizes leaving VE-cadherin-free 
gaps in between themselves (Fig. 1). These subconfluent cul-
tures exhibit a high dynamic remodeling of VE-cadherin 
which is in contrast to confluent cultures.11,13 Compare movie 
published in MBoC 2014 (http://www.molbiolcell.org/con-
tent/suppl/2013/11/11/mbc.E13-07-0404v1.DC1/mc-E13-07-
0404-s05.mp4). VE-cadheirn dynamics coincide with actin 
patterning and dynamics, as well.11 Cells of subconfluent cultures 
do not develop a circumferential band of actin filaments at the 
junctions, and there is less co-localization between VE-cadherin/
catenin complex and actin filaments (Fig. 1). This patterning, 
seen in subconfluent cells, is usually accompanied by the appear-
ance of large amounts of stress fibers that traverse the cytoplasm 
and can terminate at cell junctions.13,111 These stress fibers are 
contractile as they consist of polarized actin filaments, myosin 
II, and α-actinin.39,43 Together, the appearance and dynamics of 
actin filaments in endothelium critically depend on the physi-
ological and pathological conditions in their environment.37,41,42 
Thus, both the VE-cadherin and the actin patterning in grow-
ing culture differ from the actin and VE-cadherin patterning 
seen physiologically in endothelial cells in vivo (see above). 
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The mechanistic background of the cell density-dependent 
VE-cadherin and actin patterning and dynamics remained enig-
matic. Recently, the naturally elegant, and yet simple principle 
behind this mystery was found to depend on two facts; first, a 
constant cell density-independent expression of VE-cadherin 
and second, the cell density-dependent cell size. The cell den-
sity-independent expression of VE-cadherin was already shown 
in 1995 by comparing the total amount of VE-cadherin in sub-
confluent and confluent human umbilical vein endothelial cul-
tures;110 a result recently confirmed by a detailed quantitative 
analysis.11 When combining these two facts, it became obvious 
that a given amount of VE-cadherin distributed along the cell 
junctions appear interrupted in large cells having an elongated 
cell perimeter (subconfluent cultures). Cell growth increases cell 
density, and thus, cells become smaller, and subsequently, possess 
a shortened cell perimeter (confluent cells). As a consequence, 
the individual VE-cadherin clusters become narrow and, near 
the end, (highly confluent cells with > 105 cells/cm2) form a con-
tinuous line along the junctions11 (Fig. 1). The mechanistic back-
ground of cell density-dependent differences in VE-cadherin 
dynamics11,13 and junction integrity can be explained by the for-
mation of lamellipodia-like structures that preferentially appear 
between individual VE-cadherin clusters.11

Interdependency between VE-cadherin-mediated cell adhe-
sion and JAIL formation control junction integrity

Junction associated intermittent lamellipodia (JAIL) indicates 
lamellipodia-like structures that appear at established endothe-
lial junctions and are spatiotemporally restricted.11 Particularly, 
JAIL are formed at cell junctions where VE-cadherin is locally 
lacking and controlled by N-WASP-activated ARP2/3 com-
plex that mediates actin polymerization,11 a molecular mecha-
nism comparable to lamellipodia formation at the leading 
edges of migrating cells. An interdependent regulation between 
VE-cadherin-mediated cell adhesion and ARP2/3 complex-
mediated and actin-driven JAIL formation was proposed to con-
trol VE-cadherin dynamics by an iterative cycle (Fig. 2). This 
was demonstrated by fluorescent life cell imaging of HUVEC 
expressing both p20, a subunit of the ARP2/3 complex, tagged 
with EGFP and VE-cadherin-mCherry fusion-protein uncovered 
the underlying spatiotemporal mechanism.11 It was demonstrated 
that even at established endothelial cell junctions, JAIL forma-
tion occurred and induced an overlap of plasma membranes at 
which VE-cadherin trans-adhesion plaques were formed (Figs. 3 
and 4). Those plaques increasingly clustered during JAIL retrac-
tion and incorporated VE-cadherin into the junctions (Fig. 3). 
VE-cadherin that forms adhesion plaques over the entire JAIL 
area were proposed to derive from membrane-localized mono- or 
oligomers, as described for E-cadherin already.86 In this way, JAIL 
formation change the VE-cadherin pattern and contributes to the 
observed dynamics. Thus, it becomes clear that subconfluent cul-
tures with interrupted VE-cadherin patterning display a higher 
dynamics compared with confluent cultures with a continuous 
VE-cadherin distribution. However, VE-cadherin dynamics 
constitutively still occur in confluent cultures,11,13 due to the spa-
tiotemporal small interruption of the continuous VE-cadherin 
line, a phenomenon that might be facilitated by thermodynamic 

activity in addition to the cell density dependency as described 
above (Fig. 4B). A recent report showed the importance of the 
ARP2/3-dependent maintenance of the blood–testis barrier (Lie 
et al., 2010) and the sphingosine-1-phosphate-induced junction 
remodeling (Li et al., 2004), results that supports the critical 
importance of the ARP2/3 complex and JAIL formation in junc-
tion regulation. Furthermore, JAIL formation and VE-cadherin 
dynamics were shown to drive the overall cell motility in sheet-
forming endothelial cell layers as shown by a quick adenovirus-
mediated overexpression of full-length VE-cadherin-EGFP in 
subconfluent cultures. Adenovirus-mediated gene transfer can be 
used to cause a quick protein overexpression, which is in con-
trast to lentiviral gene transfer that needs at least 48 h.112 Quick 
VE-cadherin-EGFP overexpression within hours maintained the 
subconfluency of the cells but changed the VE-cadherin pattern-
ing form interrupted into a continuous line. Those cells displayed 
less JAIL, less VE-cadherin dynamics, and dramatically reduced 
the overall cell motility within the endothelial monolayer11 
(link:  http://www.molbiolcell.org/content/suppl/2013/11/11/
mbc.E13-07-0404v1.DC1/mc-E13-07-0404-s06.mp4), while 
inhibition of ARP2/3 complex blocked VE-cadherin dynam-
ics and caused intercellular gap formation.11 Gap formation was 
also demonstrated using N-WASP mutants11,21 or depletion of 
cortactin,85 molecules that to the end control the activity of the 
ARP2/3 complex.113,114

Although the molecular mechanisms that control interaction 
between JAIL formation and VE-cadherin-mediated cell adhe-
sion is incompletely understood there is evidence that α-catenin 
and p120ctn, components of the VE-cadherin/catenin complex, 
are interaction partners for molecules that control actin polym-
erization. In particular, vinculin is associated with the cadherin/
catenin complex,56 and was indicated to couple actin stress 
fibers to the VE-cadherin/catenin complex in endothelium.13 
Furthermore, α-catenin, a vinculin homolog,115 recruited the 
ARP2/3 complex to cell junction,116,117 and also becomes acti-
vated by α-catenin,118 and thus, might contribute to control actin 
polymerization at adherens junctions.119 Otherwise, JAIL are not 
associated with stress fibers, and thus, vinculin might not play 
a central role in this process. Rather, it seems more reasonable 
to assume that α-catenin, which competes with the ARP2/3 
complex for actin binding,53,54 mediates this process. However, 
the junction-associated molecules that to the end control acti-
vation or blocking of JAIL has to be identified. In addition, a 
recent paper suggested a tension-dependent recovery of micro-
wounds that develop due to leukocyte transmigration or after 
mechanical wounding by actin-driven and ARP2/3-dependent 
formation of lamellipodia-like structures that appeared quickly 
after wounding and were termed ventral lamellipodia.113 Those 
actin-rich structures were also responsible for closing transcel-
lular wounds, and are mostly independent on cadherin-mediated 
cell adhesion.113 It has to be investigated if, apart from loss of 
tension, other mechanisms play a role. It is reasonable to assume 
that those transcellular wounds disintegrate both the membrane 
cytoskeleton and cortical actin filaments, and thus, might lead to 
actin nucleation which in turn might drive wound closure. If loss 
of tension play a role for the formation of JAIL that also appear in 
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stress fiber-free, highly confluent, endothelial cultures37 might be 
tested. However, actin-rich structure that move along the junc-
tions has also been shown to maintain the blood brain barrier 
via G-protein coupled receptor in Drosophila melanogaster.114 In 
summary, it becomes obvious that actin-driven and ARP2/3-
controlled lammellipodia are not restricted to the leading edge of 
migrating cells but are also of critical importance in formation, 
maintenance, and dynamics at cell junctions and for cellular 
repair mechanisms.

Concluding Remarks and Future Directions

Regulation of endothelial adherens junctions, particularly 
the interaction of the VE-cadherin catenin complex and actin 
filaments, is central in physiology and pathology but is incom-
pletely understood. This also includes the question how the 
membrane cytoskeleton and the cortical actin filaments are 
structurally organized at cell junctions. Recent work addressed 
the role of actin nucleators, such as ARP2/3 complex and its 
activators N-WASP and cortactin, in adherens junction regu-
lation. Based on biochemical, morphological, and dynamic 
analyses, evidence was provided that certain actin-binding 
actin-nucleators can interact with components of adherens 
junctions, in particular, with the VE-cadherin/catenin complex 
in endothelium. The large number of molecular interactions 

between actin-regulating and VE-cadherin-associated mol-
ecules open a very large number of regulatory possibilities. This 
becomes even more complex when more than one stimuli tar-
gets the endothelium at the same time. It remains to be investi-
gated if these interactions are stimulus-specific and whether or 
not molecules that control VE-cadherin and actin interaction 
are in balance with each other. It becomes increasingly evident 
that dynamics of junction regulation occurs at the subcellular 
level rather than a general response of the entire cell junctions. 
Therefore, spatiotemporal resolved quantitative experimental 
approaches are required. Live cell imaging is a suitable method 
of choice for these challenging questions. The uncovering of 
these local dynamic regulations and successfully placing them 
in a local regulatory network involving mathematical mod-
eling may help to design future therapies and treatments for  
severe diseases such as septic shock, acute and chronic inflam-
mation, and tumor-angiogenesis. We must press forward to find 
out.
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